GIẢI PHƯƠNG TRÌNH TỔ HỢP CHỈNH HỢP

     
Giải phương trình tổ hợp, hoán vị với chỉnh vừa lòng là phần nâng cao thuộc lịch trình lớp 11.

Bạn đang xem: Giải phương trình tổ hợp chỉnh hợp

PHƯƠNG PHÁP

1. Kỹ năng và kiến thức cần nhớ


*

2. Một vài dạng toán hay gặp

Dạng 1:
Giải phương trình, hệ phương trình hoán vị, chỉnh hợp, tổ hợpPhương pháp chung:Sử dụng những công thức tính số hoán vị, chỉnh hợp, tổ hợp để biến đổi phương trình.Kiểm tra điều kiện của nghiệm với kết luận.Dạng 2: Giải bất phương trình hoán vị, chỉnh hợp, tổ hợpPhương pháp chung:Sử dụng các công thức tính số hoán vị, chỉnh hợp, tổ hợp để biến đổi bất phương trình.Kiểm tra điều kiện của nghiệm và kết luận.

VÍ DỤ VẬN DỤNG

Câu
1.Tìm tất cả các cực hiếm $x in mathbbN$ thỏa mãn nhu cầu $6left( P_x - P_x - 1 ight) = P_x + 1.$A. X = 2.B. X = 3.C. X = 2; x = 3.D. X = 5.
Điều kiện: $x ge 1$ với $x in mathbbN.$Ta bao gồm $6left( P_x - P_x - 1 ight) = P_x + 1 Leftrightarrow 6left< x! - left( x - 1 ight)! ight> = left( x + 1 ight)! Leftrightarrow 6left( x - 1 ight)!.left( x - 1 ight) = left( x - 1 ight)!.xleft( x + 1 ight)$$ Leftrightarrow 6.left( x - 1 ight) = xleft( x + 1 ight) Leftrightarrow x^2 - 5x + 6 = 0 Leftrightarrow left< eginarraylx = 2 m left( nhan ight)\x = 3 m left( nhan ight)endarray ight..$ chọn C.
Câu
2.Tính tổng S của toàn bộ các cực hiếm của x vừa lòng $P_2.x^2--P_3.x = 8.$A. S = - 4.B. S = - 1.C. S = 4.D. S = 3.
Ta tất cả $P_2.x^2--P_3.x = 8 Leftrightarrow 2!.x^2 - 3!.x = 8 Leftrightarrow 2x^2 - 6x - 8 = 0 Leftrightarrow left< eginarraylx = - 1\x = 4endarray ight.$-> S = - 1 + 4 = 3Chọn D.
Điều kiện: $x ge 2$ cùng $x in mathbbN$.Ta có $3A_x^2 - A_2x^2 + 42 = 0 Leftrightarrow 3.fracx!left( x - 2 ight)! - fracleft( 2x ight)!left( 2x - 2 ight)! + 42 = 0$$ Leftrightarrow 3.left( x - 1 ight).x - left( 2x - 1 ight).2x + 42 = 0 Leftrightarrow x^2 + x - 42 = 0 Leftrightarrow left< eginarraylx = - 7left( loai ight)\x = 6left( nhan ight)endarray ight..$ chọn B.
Câu
4.Cho số tự nhiên và thoải mái x thỏa mãn $A_x^10 + A_x^9 = 9A_x^8$. Mệnh đề nào sau đây đúng?A. X là số bao gồm phương.B. X là số nguyên tố.C. X là số chẵn.D. X là số phân tách hết mang lại 3
Điều kiện: $x ge 10$ và $x in mathbbN$.Ta có $A_x^10 + A_x^9 = 9A_x^8 Leftrightarrow fracx!left( x - 10 ight)! + fracx!left( x - 9 ight)! = 9fracx!left( x - 8 ight)!$$ Leftrightarrow frac11 + frac1x - 9 = frac9left( x - 9 ight)left( x - 8 ight) Leftrightarrow x^2 - 16x + 55 = 0 Leftrightarrow left< eginarraylx = 11left( nhan ight)\x = 5left( loai ight)endarray ight..$ chọn B.
Câu
5.Có từng nào số thoải mái và tự nhiên $n$ thỏa mãn nhu cầu $A_n^3 + 5A_n^2 = 2left( n + 15 ight)$?A. 0.B. 1C. 2D. 3
Điều kiện: $n ge 3$ cùng $n in mathbbN.$Ta bao gồm $A_n^3 + 5A_n^2 = 2left( n + 15 ight) Leftrightarrow fracn!left( n - 3 ight)! + 5.fracn!left( n - 2 ight)! - 2n - 30 = 0$$ Leftrightarrow left( n - 2 ight).left( n - 1 ight).n + 5.left( n - 1 ight).n - 2n - 30 = 0 Leftrightarrow n^3 + 2n^2 - 5n - 30 = 0 Leftrightarrow n = 3.$ lựa chọn B.
Câu
6.Tìm quý hiếm $n in mathbbN$ thỏa mãn $C_n + 1^1 + 3C_n + 2^2 = C_n + 1^3.$A. N = 12.B. N = 9.C. N = 16.D. N = 2.
Điều kiện: $n ge 2$ và $n in mathbbN.$Ta gồm $C_n + 1^1 + 3C_n + 2^2 = C_n + 1^3 Leftrightarrow fracleft( n + 1 ight)!1!.n! + 3.fracleft( n + 2 ight)!2!.n! = fracleft( n + 1 ight)!3!.left( n - 2 ight)!$$ Leftrightarrow n + 1 + 3.fracleft( n + 1 ight).left( n + 2 ight)2 = fracleft( n - 1 ight).n.left( n + 1 ight)6 Leftrightarrow 1 + 3.fracleft( n + 2 ight)2 = fracleft( n - 1 ight).n.6$$ Leftrightarrow 6 + 9n + 18 = n^2 - n Leftrightarrow n^2 - 10n - 24 = 0 Leftrightarrow left< eginarrayln = - 2left( loai ight)\n = 12left( nhan ight)endarray ight..$ chọn A.
Câu
7.Tính tích p của tất cả các quý hiếm của x thỏa mãn nhu cầu $C_14^x + C_14^x + 2 = 2C_14^x + 1.$A. Phường = 4.B. Phường = 32.C. P = - 32.D. Phường = 12.
Điều kiện: $0 le x le 12$ và $x in mathbbN$.Ta gồm $C_14^x + C_14^x + 2 = 2C_14^x + 1 Leftrightarrow frac14!x!left( 14 - x ight)! + frac14!left( x + 2 ight)!left( 12 - x ight)! = 2frac14!left( x + 1 ight)!left( 13 - x ight)!$$eginarrayl Leftrightarrow frac1left( 14 - x ight)left( 13 - x ight) + frac1left( x + 1 ight)left( x + 2 ight) = 2.frac1left( x + 1 ight)left( 13 - x ight)\ Leftrightarrow left( x + 1 ight)left( x + 2 ight) + left( 14 - x ight)left( 13 - x ight) = 2left( x + 2 ight)left( 14 - x ight)endarray$$ Leftrightarrow x^2 - 12x + 32 = 0 Leftrightarrow left< eginarrayl x = 4\ x = 8 endarray ight. o p = 4.8 = 32.$Chọn B.
Câu
8.Tính tổng S của toàn bộ các giá trị của $n$ thỏa mãn nhu cầu $frac1C_n^1 - frac1C_n + 1^2 = frac76C_n + 4^1.$A. S = 8.B. S = 11.C. S = 12.D. S = 15.
Điều kiện: $n ge 1$ cùng $n in mathbbN$.Ta bao gồm $frac1C_n^1 - frac1C_n + 1^2 = frac76C_n + 4^1 Leftrightarrow fracleft( n - 1 ight)!n! - frac2!.left( n - 1 ight)!left( n + 1 ight)! = frac7left( n + 3 ight)!6left( n + 4 ight)! Leftrightarrow frac1n - frac2nleft( n + 1 ight) = frac76left( n + 4 ight)$$ Leftrightarrow n^2 - 11n + 24 = 0 Leftrightarrow left< eginarrayln = 3left( nhan ight)\n = 8left( nhan ight)endarray ight. o S = 3 + 8 = 11.$ lựa chọn B.
Câu
9.Tìm cực hiếm $x in mathbbN$ thỏa mãn $C_x^0 + C_x^x - 1 + C_x^x - 2 = 79.$A. X = 13.B. X = 17.C. X = 16.D. X = 12.
Điều kiện: $x in mathbbN$.Ta bao gồm $C_x^0 + C_x^x - 1 + C_x^x - 2 = 79 Leftrightarrow C_x^0 + C_x^1 + C_x^2 = 79$$ Leftrightarrow 1 + x + fracxleft( x - 1 ight)2 = 79 Leftrightarrow x^2 + x - 156 = 0 Leftrightarrow left< eginarraylx = 12left( nhan ight)\x = - 13left( loai ight)endarray ight..$ chọn D.
Câu
10.Tìm cực hiếm $n in mathbbN$ thỏa mãn $C_n + 4^n + 1 - C_n + 3^n = 7left( n + 3 ight).$A. N = 15.B. N = 18.C. N = 16.D. N = 12.
Điều kiện: $n in mathbbN$.Ta tất cả $C_n + 4^n + 1 - C_n + 3^n = 7left( n + 3 ight) Leftrightarrow C_n + 4^3 - C_n + 3^3 = 7left( n + 3 ight)$$ Leftrightarrow fracleft( n + 4 ight)left( n + 2 ight)3! - fracleft( n + 2 ight)left( n + 1 ight)3! = 7 Leftrightarrow 3n - 36 = 0 Leftrightarrow n = 12left( nhan ight).$ lựa chọn D.
Câu
11.Tìm quý giá $n in mathbbN$ thỏa mãn nhu cầu $C_n^1 + C_n^2 + C_n^3 = frac7n2.$A. N = 3.B. N = 4.C. N = 6.D. N = 8.
Ta gồm $C_n^1 + C_n^2 + C_n^3 = frac7n2 Leftrightarrow fracn!left( n - 1 ight)! + fracn!2!.left( n - 2 ight)! + fracn!3!left( n - 3 ight)! = frac7n2$$ Leftrightarrow n^2 - 16 = 0 o n = 4.$ lựa chọn B.
Câu
12.Tính tổng S của tất cả các cực hiếm của x thỏa $C_x^1 + 6C_x^2 + 6C_x^3 = 9x^2 - 14x.$A. S = 2.B. S = 7.C. S = 9.D. S = 14.
Điều kiện: $x ge 3$ với $x in mathbbN.$Ta tất cả $C_x^1 + 6C_x^2 + 6C_x^3 = 9x^2 - 14x Leftrightarrow fracx!1!.left( x - 1 ight)! + 6.fracx!2!.left( x - 2 ight)! + 6.fracx!3!.left( x - 3 ight)! = 9x^2 - 14x$$ Leftrightarrow x + 3xleft( x - 1 ight) + left( x - 2 ight)left( x - 1 ight)x = 9x^2 - 14x Leftrightarrow left< eginarraylx = 0left( loai ight)\x = 2left( loai ight)\x = 7left( nhan ight)endarray ight..$ lựa chọn B.
Câu
13.Tìm giá trị $n in mathbbN$ vừa lòng $C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_n + 2^8.$A. N = 18.B. N = 16.C. N = 15.D. N = 14.
Điều kiện: $n ge 9$ cùng $n in mathbbN.$Áp dụng phương pháp $C_n^k + C_n^k + 1 = C_n + 1^k + 1$, ta bao gồm $C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_n + 2^8$$ Leftrightarrow C_n^6 + C_n^7 + 2left( C_n^7 + C_n^8 ight) + C_n^8 + C_n^9 = 2C_n + 2^8 Leftrightarrow C_n + 1^7 + 2C_n + 1^8 + C_n + 1^9 = 2C_n + 2^8$$ Leftrightarrow left( C_n + 1^7 + C_n + 1^8 ight) + left( C_n + 1^8 + C_n + 1^9 ight) = 2C_n + 2^8 Leftrightarrow C_n + 2^8 + C_n + 2^9 = 2C_n + 2^8$$ Leftrightarrow C_n + 2^9 = C_n + 2^8 o n + 2 = 9 + 8 Leftrightarrow n = 15.$ chọn C.

Xem thêm: Phaân Tích Nhân Vật Phương Định, Access Denied


Câu
14.Đẳng thức nào sau đây là sai?A. $C_2007^7 = C_2006^7 + C_2006^6.$B. $C_2007^7 = C_2006^2000 + C_2006^6.$C. $C_2007^7 = C_2006^2000 + C_2006^1999.$D. $C_2007^7 = C_2006^7 + C_2006^2000.$
Áp dụng cách làm $C_n^k + C_n^k + 1 = C_n + 1^k + 1$, ta có $C_2006^6 + C_2006^7 = C_2007^7$. Cho nên vì thế A đúng.Áp dụng cách làm $C_n^k = C_n^n - k o left{ eginarrayl C_2006^6 = C_2006^2000\ C_2006^7 = C_2006^1999 endarray ight..$Suy ra $C_2007^7 = C_2006^6 + C_2006^7 = C_2006^2000 + C_2006^1999 = C_2006^2000 + C_2006^7$. Cho nên vì thế C, D đúng; B sai.Chọn B.
Câu
15.Đẳng thức làm sao sau đó là đúng?A. $1 + 2 + 3 + 4 + ... + n = C_n + 1^2.$B. $1 + 2 + 3 + 4 + ... + n = A_n + 1^2.$C. $1 + 2 + 3 + 4 + ... + n = C_n^1 + C_n^2 + .... + C_n^n.$D. $1 + 2 + 3 + 4 + ... + n = A_n^1 + A_n^2 + .... + A_n^n.$
Ta có $1 + 2 + 3 + 4 + ... + n = fracnleft( n + 1 ight)2$ cùng $C_n + 1^2 = fracleft( n + 1 ight)!2!left( n + 1 - 2 ight)! = fracnleft( n + 1 ight)2.$Do kia A đúng. Lựa chọn A.
Câu
16.Tính tích p. Của tất cả các quý hiếm của $n$ vừa lòng $P_nA_n^2 + 72 = 6left( A_n^2 + 2P_n ight).$A. P = 12.B. P. = 5.C. Phường = 10.D. P. = 6.
Điều kiện: $n ge 2$ với $n in mathbbN.$Ta tất cả $P_nA_n^2 + 72 = 6left( A_n^2 + 2P_n ight) Leftrightarrow n!.fracn!left( n - 2 ight)! + 72 = 6left< fracn!left( n - 2 ight)! + 2.n! ight>$$ Leftrightarrow n!.left( n - 1 ight).n + 72 = 6left< left( n - 1 ight)n + 2.n! ight> Leftrightarrow left( n! - 6 ight)left( n^2 - n - 12 ight) = 0$$ Leftrightarrow left< eginarrayl n^2 - n - 12 = 0\ n! - 6 = 0 endarray ight. Leftrightarrow left< eginarrayl n = 4left( nhan ight)\ n = - 3left( loai ight)\ n = 3left( nhan ight) endarray ight. o phường = 4.3 = 12.$Chọn A.
Câu
17.Tính tích phường của tất cả các cực hiếm của x vừa lòng $7left( A_x + 1^x - 1 + 2P_x - 1 ight) = 30P_x.$A. Phường = 7.B. Phường = 4.C. P = 28.D. P = 14.
Điều kiện: $x ge 1$ với $x in mathbbN$.Ta tất cả $7left( A_x + 1^x - 1 + 2P_x - 1 ight) = 30P_x Leftrightarrow 7left< fracleft( x + 1 ight)!2! + 2left( x - 1 ight)! ight> = 30x!$$ Leftrightarrow 7left< fracxleft( x + 1 ight)2 + 2 ight> = 30x Leftrightarrow 7x^2 - 53x + 28 = 0 Leftrightarrow left< eginarraylx = 7left( nhan ight)\x = frac47left( loai ight)endarray ight. o p. = 7.$ lựa chọn A.
Câu
18.Tìm quý hiếm $n in mathbbN$ vừa lòng $C_n + 8^n + 3 = 5A_n + 6^3.$A. N = 15.B. N = 17.C. N = 6.D. N = 14.
Áp dụng bí quyết $C_n^k = C_n^n - k$, ta gồm $C_n + 8^n + 3 = 5A_n + 6^3 Leftrightarrow C_n + 8^5 = 5.A_n + 6^3$$ Leftrightarrow fracleft( n + 8 ight)left( n + 7 ight)5! = 5 Leftrightarrow n^2 + 15n - 544 = 0 Leftrightarrow left< eginarrayln = 17left( nhan ight)\n = - 32left( nhan ight)endarray ight..$ lựa chọn B.
Câu
19.Tìm cực hiếm $x in mathbbN$ thỏa mãn nhu cầu $A_x^2.C_x^x - 1 = 48.$A. X = 4.B. X = 3.C. X = 7.D. X = 12.
Điều kiện: $x ge 2$ cùng $x in mathbbN$.Ta có $A_x^2.C_x^x - 1 = 48 Leftrightarrow fracx!left( x - 2 ight)!.fracx!left( x - 1 ight)!.1! = 48$$ Leftrightarrow left( x - 1 ight)x.x = 48 Leftrightarrow x^3 - x^2 - 48 = 0 Leftrightarrow x = 4left( tho^u a ma~o n ight).$ lựa chọn A.
Câu
20.Tìm quý giá $n in mathbbN$ thỏa mãn $A_n^2 - C_n + 1^n - 1 = 5.$A. N = 3.B. N = 5.C. N = 4.D. N = 6.
Điều kiện: $n ge 2$ với $n in mathbbN.$Ta có $A_n^2 - C_n + 1^n - 1 = 5 Leftrightarrow fracn!left( n - 2 ight)! - fracleft( n + 1 ight)!left( n - 1 ight)!2! = 5 Leftrightarrow left( n - 1 ight).n - fracnleft( n + 1 ight)2 - 5 = 0$$ Leftrightarrow n^2 - 3n - 10 = 0 Leftrightarrow left< eginarrayln = - 2;left( loai ight)\n = 5left( nhan ight)endarray ight..$ chọn B.
Câu
21.Tính tích p của tất cả các quý giá của $n$ thỏa mãn nhu cầu $A_n^2 - 3C_n^2 = 15 - 5n.$A. P = 5.B. Phường = 6.C. P = 30.D. P = 360.
Điều kiện: $n ge 2$ và $n in mathbbN.$Ta có $A_n^2 - 3C_n^2 = 15 - 5n Leftrightarrow fracn!left( n - 2 ight)! - 3.fracn!2!.left( n - 2 ight)! = 15 - 5n$$ Leftrightarrow nleft( n - 1 ight) - 3fracnleft( n - 1 ight)2 = 15 - 5n Leftrightarrow - n^2 + 11n - 30 = 0 Leftrightarrow left< eginarrayln = 6left( nhan ight)\n = 5left( nhan ight)endarray ight.$-> p = 5.6 = 30Chọn C.
Câu
22.Tìm quý hiếm $x in mathbbN$ thỏa mãn nhu cầu $3A_x^4 = 24left( A_x + 1^3 - C_x^x - 4 ight).$A. X = 3.B. X = 1.C. X = 5.D. $x = 1; m x = 5.$
Điều kiện: $x ge 4$ cùng $x in mathbbN$.Ta tất cả $3A_x^4 = 24left( A_x + 1^3 - C_x^x - 4 ight) Leftrightarrow 23.fracx!left( x - 4 ight)! = 24.left< fracleft( x + 1 ight)!left( x - 2 ight)! - fracx!left( x - 4 ight)!.4! ight>$$ Leftrightarrow 23.frac1left( x - 4 ight)! = 24.left< fracx + 1left( x - 2 ight)! - frac1left( x - 4 ight)!.4! ight> Leftrightarrow 23.frac11 = 24.left< fracx + 1left( x - 2 ight)left( x - 3 ight) - frac11.24 ight>$$ Leftrightarrow 23 = 24.fracx + 1left( x - 2 ight)left( x - 3 ight) - 1 Leftrightarrow fracx + 1left( x - 2 ight)left( x - 3 ight) = 1 Leftrightarrow left< eginarraylx = 1left( loai ight)\x = 5left( nhan ight)endarray ight..$ chọn C.
Câu
23.Có từng nào số tự nhiên và thoải mái $n$ vừa lòng $fracA_n + 4^4left( n + 2 ight)! B. 2C. 3D. Vô số.
Điều kiện: $n in mathbbN$.Ta gồm $fracA_n + 4^4left( n + 2 ight)! $ Leftrightarrow left( n + 3 ight)left( n + 4 ight) Câu 24.Có từng nào số tự nhiên và thoải mái $n$ thỏa mãn $2C_n + 1^2 + 3A_n^2 - đôi mươi B. 2C. 3D. Vô số.
Điều kiện: $n ge 2$ cùng $n in mathbbN$.Ta tất cả $2C_n + 1^2 + 3A_n^2 - trăng tròn $ Leftrightarrow nleft( n + 1 ight) + 3left( n - 1 ight)n - đôi mươi Câu 25.Có bao nhiêu số tự nhiên và thoải mái $n$ thỏa mãn nhu cầu $2C_n + 1^2 + m 3A_n^2 B. 2C. 3D. Vô số.
Điều kiện: $n ge 2$ và $n in mathbbN$.Ta gồm $2C_n + 1^2 + m 3A_n^2 $ Leftrightarrow nleft( n + 1 ight) + 3left( n - 1 ight)x Câu 26.Có bao nhiêu số thoải mái và tự nhiên $n$ thỏa mãn $14.P_3C_n - 1^n - 3 B. 2C. 3D. Vô số.
Điều kiện: $n ge 3$ cùng $n in mathbbN$.Ta tất cả $14.P_3C_n - 1^n - 3 $eginarrayl Leftrightarrow 42left( n - 2 ight)left( n - 1 ight) 0 Leftrightarrow left< eginarrayln 6endarray ight.endarray$$ o left{ eginarrayln ge 7\n in mathbbNendarray ight..$ lựa chọn D.
Câu 27.Giải hệ phương trình $left{ eginarraylC_x^y - C_x^y + 1 = 0\4C_x^y - 5C_x^y - 1 = 0endarray ight..$A. $left{ eginarraylx = 17\y = 8endarray ight..$B. $left{ eginarraylx = 17\y = - 8endarray ight..$C. $left{ eginarraylx = 9\y = 8endarray ight..$D. $left{ eginarraylx = 7\y = 9endarray ight..$
Điều kiện: $x ge y + 1$ và $x,y in mathbbN$.Ta gồm $left{ eginarray*20lC_x^y - C_x^y + 1 = 0&left( 1 ight)\4C_x^y - 5C_x^y - 1 = 0&left( 2 ight)endarray ight.$.Phương trình $left( 1 ight) Leftrightarrow C_x^y = C_x^y + 1 Leftrightarrow y + y + 1 = x Leftrightarrow x - 2y - 1 = 0$.Phương trình $left( 2 ight) Leftrightarrow 4C_x^y = 5C_x^y - 1 Leftrightarrow 4.fracx!y!.left( x - y ight)! = 5.fracx!left( y - 1 ight)!.left( x - y + 1 ight)!$$ Leftrightarrow frac4y = frac5x - y + 1 Leftrightarrow 4x - 9y + 4 = 0.$Do kia hệ phương trình đã mang đến $ Leftrightarrow left{ eginarraylx - 2y - 1 = 0\4x - 9y + 4 = 0endarray ight. Leftrightarrow left{ eginarraylx = 17\y = 8endarray ight.left( tho^u a ma~o n ight).$ chọn A.
Câu
28.Tìm cặp số $left( x;y ight)$ vừa lòng $fracC_x + 1^y6 = fracC_x^y + 15 = fracC_x^y - 12.$A. $left( x;y ight) = left( 8;3 ight).$B. $left( x;y ight) = left( 3;8 ight).$C. $left( x;y ight) = left( - 1;0 ight).$D. $left( x;y ight) = left( - 1;0 ight), m left( x;y ight) = left( 8;3 ight).$
Điều kiện: $x ge y + 1$ và $x,y in mathbbN$.$fracC_x + 1^y6 = fracC_x^y + 15 Leftrightarrow 5.C_x + 1^y = 6.C_x^y + 1 Leftrightarrow frac5left( x + 1 ight)!y!left( x + 1 - y ight)! = frac6x!left( y + 1 ight)!left( x - y - 1 ight)!$$ Leftrightarrow frac5left( x + 1 ight)left( x - y ight)left( x - y + 1 ight) = frac6left( y + 1 ight) Leftrightarrow 5left( y + 1 ight)left( x + 1 ight) = 6left( x - y ight)left( x - y + 1 ight)$. $left( 1 ight)$$fracC_x^y + 15 = fracC_x^y - 12 Leftrightarrow 2.C_x^y + 1 = 5.C_x^y - 1 Leftrightarrow fracx!5.left( y + 1 ight)!.left( x - y - 1 ight)! = fracx!2.left( y - 1 ight)!.left( x - y + 1 ight)!$$ Leftrightarrow frac15.yleft( y + 1 ight) = frac12.left( x - y ight)left( x - y + 1 ight)$ $ Leftrightarrow 5.yleft( y + 1 ight) = 2.left( x - y ight)left( x - y + 1 ight) Leftrightarrow 15.yleft( y + 1 ight) = 6.left( x - y ight)left( x - y + 1 ight)$. $left( 2 ight)$Từ $left( 1 ight)$ cùng $left( 2 ight)$, suy ra $ Leftrightarrow 5left( y + 1 ight)left( x + 1 ight) = 15.yleft( y + 1 ight) Leftrightarrow x + 1 = 3y$. Thay vào $left( 1 ight)$, ta được$ Leftrightarrow 15left( y + 1 ight)y = 6left( 2y - 1 ight)2y Leftrightarrow 3y^2 - 9y = 0 Leftrightarrow left< eginarrayly = 0 o x = - 1left( loai ight)\y = 3 o x = 8left( nhan ight)endarray ight..$ lựa chọn A.
Câu
29.Giải hệ phương trình $left{ eginarraylC_y^x:C_y + 2^x = frac13\C_y^x:A_y^x = frac124endarray ight..$A. $left{ eginarraylx = 4\y = 1endarray ight..$B. $left{ eginarraylx = 4\y = 8endarray ight..$C. $left{ eginarraylx = 4\y = 1endarray ight., m left{ eginarraylx = 4\y = 8endarray ight..$D. $left{ eginarraylx = 1\y = 8endarray ight..$
Điều kiện: $y ge x$ cùng $x,y in mathbbN$.Ta có $left{ eginarray*20lC_y^x:C_y + 2^x = frac13&left( 1 ight)\C_y^x:A_y^x = frac124&left( 2 ight)endarray ight..$Phương trình $left( 2 ight) Leftrightarrow fracC_y^xA_y^x = frac124 Leftrightarrow 24C_y^x = A_y^x Leftrightarrow 24.fracy!x!left( y - x ight)! = fracy!left( y - x ight)! Leftrightarrow frac24x! = 1 Leftrightarrow x = 4$.Thay $x = 4$ vào $left( 1 ight)$, ta được $fracC_y^4C_y + 2^4 = frac13 Leftrightarrow 3C_y^4 = C_y + 2^4 Leftrightarrow 3.fracy!4!.left( y - 4 ight)! = fracleft( y + 2 ight)!4!.left( y - 2 ight)!$$ Leftrightarrow frac31 = fracleft( y + 1 ight)left( y + 2 ight)left( y - 3 ight)left( y - 2 ight) Leftrightarrow y^2 - 9y + 8 = 0 Leftrightarrow left< eginarrayly = 1 4 = xleft( nhan ight)endarray ight..$ lựa chọn B.

Xem thêm: Bài Toán Tính Quãng Đường Vật Đi Được Trong Thời Gian T, Công Thức Quãng Đường Vận Tốc Thời Gian


Câu
30.Giải hệ phương trình $left{ eginarrayl2A_x^y + 5C_x^y = 90\5A_x^y - 2C_x^y = 80endarray ight.$.A. $left{ eginarraylx = 5\y = 2endarray ight..$B. $left{ eginarraylx = 20\y = 10endarray ight..$C. $left{ eginarraylx = 2\y = 5endarray ight..$D. $left{ eginarraylx = 6\y = 3endarray ight..$
Điều kiện: $x ge y$ với $x,y in mathbbN$.Đặt $left{ eginarraylu = A_x^y\v = C_x^yendarray ight.$, ta được $left{ eginarrayl2u + 5v = 90\5u - 2v = 80endarray ight. Leftrightarrow left{ eginarraylu = 20\v = 10endarray ight.$.Ta bao gồm $A_n^k = k!C_n^k o u = y!.v Leftrightarrow trăng tròn = y!.10 Leftrightarrow y! = 2 Leftrightarrow y = 2.$Với $u = 20$, suy ra $A_x^y = trăng tròn Leftrightarrow A_x^2 = 20 Leftrightarrow fracx!left( x - 2 ight)! = đôi mươi Leftrightarrow left( x - 1 ight)x = trăng tròn Leftrightarrow left< eginarraylx = 5\x = - 4left( loai ight)endarray ight..$Vậy hệ phương trình có nghiệm $left{ eginarraylx = 5\y = 2endarray ight..$ lựa chọn A.