CHUYÊN ĐỀ ĐỒNG DƯ THỨC

     

Chuyên đề Đồng dư thức môn Số học tập lớp 6 đặt ra định nghĩa và các đặc điểm cơ phiên bản của đồng dư thức. Mời các bạn tham khảo chăm đề để bổ sung thêm kỹ năng về môn Số học lớp 6 nói phổ biến và về đồng dư thức nói riêng.




Bạn đang xem: Chuyên đề đồng dư thức

*

Chuyên đề ĐỒNG DƯ THỨC Môn: SỐ HỌC 6 Người thực hiện: Lê Thị Kim Oanh Thực hiện: tháng 1 năm 2011A.Tóm tắt các kiến thức cơ bản :I/Định nghĩa : Cho m là số nguyên dương. Hai số nguyên a và b được gọi đồng với nhau theo module m, nếu a ­ b chia hết cho m ( a ­ b )| m hay m(a ­ b) Ký hiệu : a ≡ b (mod m) được gọi là một đồng dư thức. Ví dụ : 3 ≡ ­ 1 (mod 4) 5 ≡ 17 (mod 6) 18 ≡ 0 (mod 6)Điều kiện a ≡ 0 (mod m) có nghĩa là a là bội của m, k/h: a  m (a | m) hay m là ước của a ( m  a) .Nếu a ­ b không chia hết cho m, ta viết a ≡ b (mod m)II/ Các tính chất cơ bản :1) Với mọi số nguyên a, ta có a ≡ a (mod m)2) a ≡ b (mod m) => b ≡ a (mod m)3) a ≡ b (mod m) và b ≡ c (mod m) => a ≡ c (mod4) a ≡ b (mod m) và c ≡ d (mod m) => a + c ≡ b + d (mod m)Hệ quả : a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1 + a2 + a3 + ... + an ≡ b1 + b2 + b3 + ... + bn(mod m) 5) a ≡ b (mod m) và c ≡ d (mod m) => a.c ≡ b.d (mod m)Hệ quả : a) a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1.a2.a3. ... .an ≡ b1.b2.b3. ... .bn(mod m) b) a ≡ b (mod m) => an ≡ bn (mod m) ­ với mọi n N +Nhận xét : a) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a + b ≡ 2 (mod 2)Mà 2 ≡ 0 (mod 2) => a + b ≡ 0 (mod 2) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a.b ≡ 1(mod 2)Điều này có nghĩa : Tổng của hai số lẻ là một số chẵn, tích của hai số lẻ là một số lẻ.b)a ≡ 3 (mod 7) => a2 ≡ 9 (mod 7) ≡ 2 (mod 2)Điều này có nghĩa : Nếu một số chia 7 dư 3 thì bình phương số đó chia 7 dư 2.Chú ý : 1a)Không được chia hai vế của một đồng dư thức .Ví dụ : * 2 ≡ 12 (mod 10) nhưng 1 ≡ 6 (mod 10). b) a ≡ 0 (mod m) và b ≡ 0 (mod m), nhưng a.b có thể đồng dư với 0 theo module m.Ví dụ : 2 ≡ 0 (mod 10) và 5 ≡ 0 (mod 10), nhưng 2.5 = 10 ≡ 10 (mod 10).Như vậy để phép chia hai vế của đồng thức đòi hỏi phải kèm theo một số điều kiện .6) Nếu a ≡ b (mod m) và d là ước chung của a, b sao cho (d, m) = 1 thì : a : d ≡ b : d (mod m) ( ≡ (mod m) )7)Nếu a ≡ b (mod m) và d là số nguyên là ước chung của ba số a, b, m thì ≡ (mod )B/Áp dụng :Dạng 1 : Tìm số dư của phép chiaBài 1 : Tìm số dư trong phép chia 20042004 cho 11 Sử dụng dấu hiệu chia hết cho 11 : Một số được gọi là chia hết cho 11 khi và chỉ khi hiệu giữa các tổng chữ số ở hàng lẻ và tổng các chữ số hàng chẵn kể từ trái sang phải chia hết cho 11. Ví dụ : Xét xem số 5016 có chia hết cho 11 ?Ta có (5 + 1) ­ (0 + 6) = 0. Vì 0  11 = > 5016  11 Giải :Ta có 2002  11 => 2004 ­ 2  11 => 2004 ≡ 2 (mod 11) => 20042004 ≡ 22004 (mod 11) , mà 210 ≡ 1 (mod 11) (vì 1024 ­ 1  11) => 20042004 = 24.22000 = 24.(210)200 ≡ 24 ≡ 5 (mod 11) Vậy 20042004 chia 11 dư 5.Bài 2 : Tìm số dư khi chia A = 19442005 cho 7 Giải :Ta có : 1944 ≡ ­2 (mod 7) => 1944 ≡ (­2)2005 (mod 7) 2005Mà (­2)3 ≡ ­ 1 (mod 7) => (­23)668 ≡ 1668 (mod 7) hay (­23)668 ≡ 1 (mod 7) => (­23)668.(­2) ≡ ­ 2 (mod 7) hay (­2)2005 ≡ ­ 2 (mod 7) Vậy 19442005 cho 7 dư 5.Bài 3: Tìm số dư khi chia 3100 cho 7 GiảiTa có: 3100 = 34.396 = 34. ( 3 6 16 )Ta thấy: 3 4 81 7.11 + 4 34= 4 (=mod 7 ) (1) 2 36 + 1 729 7.104 3=6 1( =mod 7 ) (2) ( 36 ) ( 36 ) 16 16 16 ( mod 7 ) 1 ( thủ thuật 7 ) 34. ( 36 ) 16Từ (1) và (2) 4.1( hack 7 ) 3100 4 ( thủ thuật 7 )Vậy 3100 chia cho 7 dư 4.* Cách 2: 3100 = 34.396 = 34.

Xem thêm: Ở Tôm Sông Thức Ăn Được Nghiền Nát Nhờ, Tôm Sông Có Những Tập Tính Nào Dưới Đây



Xem thêm: Chú Mèo Trèo Cây Cau (Khuyết Danh Việt Nam), Con Mèo Trèo Cây Cau

( 33 ) 32+ 3 = 81 4 ( gian lận 7 ) (1) 4+ 3 = 27 3 ( −1) ( mod 7 ) 3−3 ( 1) ( gian lận 7 ) 6 ( gian lận 7 ) nhưng mà 6Do đó, ( 33 ) ( 1) ( gian lận 7 ) − ( 33 ) 1( mod 7 ) (2) 32 32 32Từ (1) và (2) 34. ( 32 ) 32 4.1( thủ thuật 7 ) 3100 4 ( hack 7 )Vậy 3100 chia cho 7 dư 4.Bài 4 : CMR các số A = 61000 ­ 1 và B = 61001 + 1 đều là bội số của 7 Giải :Ta có 6 ≡ ­ 1 (mod 7) => 6 ≡ 1 (mod 7) => 61000 ­ 1  7 1000Vậy A là bội của 7Từ 61000 ≡ 1 (mod 7) => 61001 ≡ 6 (mod 7) , mà 6 ≡ ­ 1 (mod 7)=> 61001 ≡ ­1 (mod 7) => 61001 + 1  7 Vậy B là bội của 7Bài 5: Tìm số dư khi chia tổng 3100 + 3105 cho 13 Giải* Tìm số dư khi chia 3 cho 13: là tìm số tự nhiên nhỏ hơn 13, đồng dư với 1003100 theo modun 13Ta có: 3100 = 34.396 = 34. ( 33 ) 32+) 3 4 81 13.6 +3 34= 3 (=mod13 ) (1)+) 3 3 27 13.2 +1 33= 1( =mod13 ) (3 ) 3 32 132 ( mod13 ) (3 ) 3 32 1( mod13) (2)Từ (1) và (2) 3 .( 3 ) 4 3 32 3.1( mod13) 3100 3 ( mod13 ) (1)Mặt khác: 3105 =(3 ) 3 35 3 27= 1 ( mod13 )Mà 33 � (3 ) 3 35 135 ( mod13 ) tuyệt 3 105 1( mod13) (2)Từ (1) và (2) � 3 + 3 �3 + 1( mod13) � 3 + 3 �4 ( mod13) 100 105 100 105Vậy tổng 3100 + 3105 chia cho 13 dư 4Bài 6 : Tìm số dư trong phép chia 15325 ­ 1 cho 9 Giải :Ta có 1532 ≡ 2 (mod 9) => 1532 ≡ 25 (mod 9) , mà 25 ≡ 5 (mod 9) 5=> 15325 ≡ 5 (mod 9) => 15325 ­ 1 ≡ 4(mod 9) Vậy 15325 ­ 1 chia cho 9 dư là 4.Bài 7: Chứng minh rằng: 301293 − 1 chia hết cho 13 Giải:Ta có: 3012 = 13 . 231 + 9Do đó: 3012 9 ( mod13) � 30123 93 ( mod13) mà 93 = 729 1( mod13) ( mod13)Nên 30123 1� ( 3012 ) 3 31 1 ( mod13 ) tốt 3012 93 1( mod13)Vậy 3012 − 1 �1 − 1( mod13) � 3012 − 1 �0 ( mod13 ) 93 93Hay 301293 − 1 chia hết cho 13Bài 8 : Chứng minh rằng A = 7.52n + 12.6n chia hết cho 19 Giải :Ta có A = A = 7.5 + 12.6 = A = 7.25n + 12.6n 2n nVì 25 ≡ 6 (mod 19) => 25n ≡ 6n (mod 19)=>7.25n ≡ 7.6n (mod 19) => 7.25n + 12.6n ≡ 7.6n + 12.6n ≡ 19.6n ≡ 0 (mod 19) . Điều này chứng tỏ A chia hết cho 19.Bài 9: Tìm dư trong phép chia 32003 cho 13. Giải :Ta có 3 ≡ 1 (mod 13) mà 2003 = 3.667 + 2 => 32003 = (33)667. 32 3 33 ≡ 1 => (33)667 ≡ 1667 => (33)667. 32 ≡ 1.32 (mod 13) (33)667. 32 ≡ 9 => 32003 ≡ 9 (mod 13). Vậy 32003 chia cho 13 dư 9 .Bai 10 : Chứng minh rằng 22002 ­ 4 chia hết cho 31 Giải : 5Ta có 2 ≡ 1 (mod 31) , mà 2002 = 5.400 + 2 4 Nên 22002 = (25)400 .22 Vì 25 ≡ 1 (mod 31) => (25)400 ≡ 1400 (mod 31) => (25)400.22 ≡ 1.22 (mod 31)=> 22002 ≡ 4 (mod 31) => 22002 ­ 4 chia hết cho 31Bài 11 : Chứng minh rằng : 22225555 + 55552222 chia hết cho 7 Giải :Ta có 2222 + 4  7 => 2222 ≡ ­ 4 (mod 7) => 22225555 ≡ (­ 4)5555(mod 7) 5555 ­ 4  7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7) => 22225555 + 55552222 ≡ (­ 4)5555 + 42222 (mod 7) Mà 42222 = (­4)2222 => (­ 4)5555 + 42222 = (­4)2222. 43333 + 42222 = (­4)2222. 43333 ­ (­ 4)2222 = (­4)2222(43333 ­ 1) ≡ (43) ­ 1(mod 7) (1)Ta lại có : 43 ≡ 1(mod 7) => 43 ­ 1= 63  7 => 43 ­ 1 ≡ 0 (mod 7) (2) đề xuất (­ 4)5555 + 42222 ≡ 0 (mod 7) Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.Bài 12 : Tìm dư trong phép chia 570 + 750 cho 12 Giải :Ta có 5 ≡ 1(mod 12) => (5 ) ≡ 1 (mod 12) hay 570 ≡ 1(mod 12) (1) 2 2 3572 ≡ 2 (mod 12) => (72)25 ≡ 1(mod 12) hay 750 ≡ 1(mod 12) (2) Từ (1) và (2) => 570 + 750 chia cho 12 dư 2.Bài 13 : Tìm số dư của A = 776776 + 777777 + 778778 khi chia cho 3 và khi chia cho 5? Giải :+Ta có 776 ≡ ­ 1(mod 3) => 776 ≡ ­1(mod 3) => 776776 ≡ 1 (mod 3) 776 777 ≡ 0 (mod 3) => 777777 ≡ 0 (mod 3) 778 ≡ 1 (mod 3) => 778778≡ 1 (mod 3)=> 776776 + 777777 + 778778 khi chia cho 3 dư 2.+Ta có 776 ≡ 1 (mod 5) => 776776 ≡ 1 (mod 5) 777 ≡ ­ 3 (mod 5) => 777777 ≡ ­ 3777 (mod 5) 778 ≡ 3 (mod 5) => 778778 ≡ 3778 (mod 5) => 776776 + 777777 + 778778 ≡ 1 ­ 3777 + 3778 (mod 5) Hay 776776 + 777777 + 778778 ≡ 1 + 3.3777 ­ 3777 (mod 5) 776776 + 777777 + 778778 ≡ 1 + 3777(3 ­ 1) (mod 5) 776776 + 777777 + 778778 ≡ 1 + 2.3777Mà 32 ≡ ­ 1(mod 3) => (32)388.3 ≡ 3 (mod 5)Vậy A = 776776 + 777777 + 778778 ≡ 1 + 2.3 ≡ 2 (mod 5) Vậy A chia cho 5 dư 2. 5Bài 14 : Tìm số dư của A = 32005 + 42005 khi chia cho 11 và khi chia cho 13 ? Giải : 5 5 401+Ta có : 3 ≡ 1 (mod 11) => (3 ) ≡ 1 (mod 11) và 45 ≡ 1 (mod 11) => (45)401 ≡ 1 (mod 11)=> A = 32005 + 42005 ≡ 2 (mod 11) => A chia cho 11 dư 2+Ta có : 33 ≡ 1 (mod 13) => (33)668. 3 ≡ 1.3 (mod 13) => 32005 ≡ 3 (mod 13) cùng 43 ≡ ­1 (mod 13) =>(43)668 .4≡ 1.4 (mod 13) => 42005 ≡ 4 (mod 13) => A = 32005 + 42005 ≡ 7 (mod 13) => A chia cho 13 dư 7 .Bài 15 : Giả sử m là số nguyên dương. Chứng minh rằng : Nếu ac1 ≡ ac2 (mod m) và (a, m) = 1 thì c1 ≡ c2 (mod m) Giải :Ta có : ac1 ≡ ac2 (mod m) => m  ac1 ­ ac2 => m a(c1 ­ c2)Vì (a, m) = 1 => m  c1 ­ c2 => c1 ≡ c2 (mod m)Bài 16 :Chứng minh rằng : Nếu p là một số nguyên tố và không là ước của số nguyên a thì ap ­ 1 ≡ 1 (mod p) Giải :Xét dãy số 1; 2; 3; ... ; p ­ 1. Tất cả các số này đôi một không đồng dư với nhau theo môđun p. Do đó các số a, 2a, 3a, ... ; (p ­ 1)a cũng đôi một không đồng dư với nhau rtheo môđun p. Bởi vì ngược lại nếu có r1a ≡ r2a (mod p) mà (a, p) = 1 => r1 ≡ r2 (mod p) ­ với r1, r2 là hai số nào đó của dãy số 1, 2, 3, ... , p ­ 1 (vô lí) Hơn nửa mõi một số của dãy a, 2a, 3a, ... , (p ­ 1)a đồng dư với đúng một trong các số 1, 2, 3, ... , p ­ 1 theo môđun p=> a.2a.3a. ... .(p­ 1)a ≡ 1.2.3. ... (p ­ 1) (mod p) hay (p ­ 1)!ap ­ 1 ≡ (p ­ 1)! (mod p).Vì (p, (p ­ 1)!) = 1 => ap ­ 1 ≡ 1 (mod p) Bài 17 : CMR : Nếu c là số nguyên dương : a ≡ b (mod m) => ac ≡ bc (mod c.m) Giải :a ≡ b (mod m) => a ­ b = m.q => ac ­ bc = mc.q => ac ≡ bc (mod c.m) Bài 18 : 6 Bạn Thắng học sinh lớp 6A đã viết một số có hai chữ số mà tổng các chữ số của nó là 14. Bạn Thắng đem số đó chia cho 8 thì được số dư là 4, nhưng khi chia cho 12 thì được số dư là 3. A)Chứng minh rằng bạn Thắng đã làm sai ít nhất một phép tính chia. B)Nếu phép chia thứ nhất cho 8 là đúng thì phép chia thứ hai cho 12 có ó dư là bao nhiêu ? Hãy Tìm số bị chia. Giải :a)Gọi số đó là n = ab Vì n chia cho 8 dư 4, nên n = 8p + 4Và n chia cho 12 dư 3, nên n = 12q + 3=> 8p + 4 = 12q + 3 (Mà 8p + 4 là số chẵn, còn 12q + 3 là số lẻ). Do vậy bạn Thắng đã làm sai một phép chia.b)Vì a + b = 14 => ab ≡ 2 (mod 3) => 4ab ≡ 8 (mod 12) (1)Nếu ab ≡ 0 (mod 4) => 3ab ≡ 0 (mod 12) (2)Từ (1) và (2) => ab ≡ 8 (mod 12) => n chia cho 12 dư 8Do n = 8p + 4 là số chẵn mà n = ab => b 0; 2; 4; 6; 8Nếu b = 0 => a = 14 (loại ­ vì a là số có một chữ số khác 0) b = 2 => a = 12 (loại) b = 4 => a = 10 (loại) b = 6 => a = 8 b = 8 => a = 6=> Số cần tìm là 86 hoặc 68 => Số bị chia là 68.Bài 19: Biết rằng ngày 20 / 11/1994 là ngày chủ nhật. Tính xem:a) Ngày 20 / 11/1996 là ngày thứ mấy?b) Ngày 20 / 11/2011 là ngày thứ mấy? Giảia) Vì 1996 chia hết cho 4 nên năm 1996 là năm nhuận, có 366 ngày. Từ 20 / 11/1994 đến 20 / 11/1996 là 2 năm, có: 365 . 2 + 1 (nhuận) = 731 (ngày)Biết rằng cứ mõi tuần lễ có 7 ngày.Ta có: 731 = 7. 104 + 3 hay 731 3 ( thủ thuật 7 )Như vậy, 731 ngày gồm 104 tuần và lẻ 3 ngày.Do đó, nếu ngày 20 / 11/1994 là ngày chủ nhật thì 20 / 11/1996 là ngày thứ 4.b) Từ 20 / 11/1994 đến 20 / 11/2011 là 17 năm có 4 năm nhuận là 1996, 2000, 2004, 2008. Vậy Từ 20 / 11/1994 đến 20 / 11/2011 có: 365 . 17 + 4 (nhuận) = 6209 (ngày) 7Biết rằng cứ mõi tuần lễ có 7 ngày.Ta có: 6209 = 7 . 887 Hay 6209 0 ( hack 7 )Như vậy, 6209 ngày gồm 887 tuần Do đó, nếu ngày 20 / 11/1994 là ngày chủ nhật thì 20 / 11/1996 cũng là ngàychủ nhật.Dạng 2 : Tìm chữ số tận cùng của một sốa)Tìm m ột chữ số tận cùng của a n :­Nếu a có chữ số tận cùng là 0; 1; 5 hoặc 6 thì an lần lượt có chữ số tận cùng lần lượt là 0; 1; 5 hoặc 6.­Nếu a có chữ số tận cùng là 2, 3 hoặc 7, ta vận dụng nhận xét sau với k Z 24k ≡ 6 (mod 10) 34k ≡ 1 (mod 10) 74k ≡ 1 (mod 10) Do đó để tìm chữ số tận cùng của an với a có chữ số tận cùng là 2; 3; 7 ta lấy n chia cho 4. Giả sử n = 4k + r với r 0; 1; 2; 3 Nếu a ≡ 2 (mod 10) thì an ≡ 2n = 24k + r ≡ 6.2r (mod 10) Nếu a ≡ 3 (mod 10) hoặc a ≡ 7 (mod 10) thì an ≡ a4k + r ≡ ar (mod 10) Ví dụ 1 : Tìm chữ số tận cùng của các số : a) 62009 , b) 92008 , c) 32009 , d) 22009 Giải :a) 6 có chữ số tận cùng là 6 (vì 6 khi nâng lên luỹ thừa với số mũ tự nhiên 2009khác 0 vẫn bằng chính số 6)b) 92008 = (92)1004 = 811004 = … 1 có chữ số tận cùng là 191991 = 91990.9 = (92)995.9 = 81995.9 = (…1).9 = … 9 có chữ số tận cùng là 9 Nhận xét : Số có chữ số tận cùng là 9 khi nâng lên luỹ thừa với số mũ tự nhiên chẵn khác 0 nào thì chữ số tận cùng là 1, khi nâng lên luỹ thừa với số mũ tự nhiên lẻ thì có số tận cùng là 9.c) 32009 = (34)502.3 = 81502.3 = (… 1).3 = … 3 có chữ số tận cùng là 3.d) 22009 = 22008.2 = (24)502.2 = 16502.2 = ( … 6).2 = … 2 có chữ số tận cùng là 2Ví dụ 2 : Tìm chữ số tận cùng của các số sau :a) 421 , b) 3103 , c) 84n + 1 (n N) d) 1423 + 2323 + 7023Giải :a) 430 = 42.15 = (42)15 = 1615 = …6 có chữ số tận cùng là 6 421 = 420 + 1 = (42)10.4 = 1610.4 = (…6).4 = … 4 có chữ số tận cùng là 4 Nhận xét : Số nào có số tận cùng là 4 thì khi nâng lên luỹ thừa với số mũ tự nhiên chẵn thì có số tận cùng là 6, khi nâng lên với số mũ tự nhiên lẻ có số tận cùng là 4) 8b) 3103 = 3102.3 = (32)51.3 = 951.3 = (… 9).3 = … 7 có chữ số tận cùng là 7c) 84n + 1 = 84n.8 = (23)4n.8 = 212n.8 = (24)3n.8 = 163n.8 = (…6).8 = …. 8 có chữ số tận cùng là 8d) 1423 = 1422.14 = (… 6).14 = …. 42323 = 2322.23 = (232)11.23 = ( … 9).23 = …77023 = … 0Vậy : 1423 + 2323 + 7023 = … 4 + … 7 + … 0 = … 1 có chữ số tận cùng là 1b)Tìm hai s ố tận cùng của số a n : Ta có nhận xét sau : 220 ≡ 76 (mod 100) 320 ≡ 01 (mod 100) 65 ≡ 76 (mod 100) 74 ≡ 01 (mod 100)Mà 76n ≡ 76 (mod 100) với n ≥ 1 5n ≡ 25 (mod 100) với n ≥ 2Suy ra kết quả sau với k là số tự nhiên khác 0.a20k ≡ 00 (mod 100) nếu a ≡ 0 (mod 10)a20k ≡ 01 (mod 100) nếu a ≡ 1; 3; 7; 9 (mod 10)a20k ≡ 25 (mod 100) nếu a ≡ 5 (mod 10)a20k ≡ 76 (mod 100 nếu a ≡ 2; 4; 6; 8 (mod 10)Vậy để tìm hai chữ số tận cùng của an, ta lấy số mũ n chia cho 20Bài 1 : Tìm hai chữ số tân cùng của 22003Giải :Ta có : 220 ≡ 76 (mod 100) => 220k ≡ 76 (mod 100)Do đó : 22003 = 23.(220)100 = 8.(220)100 = ( … 76).8 = …08Vậy 22003 có hai chữ số tận cùng là 08.Bài 2: Tìm hai chữ số tận cùng của:a) 2999b) 3999 Giảia) Ta thấy 2 = 2 : 2 (1) 999 1000 ( ) 100mà 21000 = 210Ta có: 210 − −1024 �= ( 1) ( hack 25 ) (2 ) 10 100 ( 1) ( mod 25 ) 100 9 21000 1( mod 25 ) Hay 21000 chia cho 25 dư 1, do đó hai chữ số tận cùng của 21000 có thể là 01; 26; 51; 75, nhưng 21000 là bội của 4 nên hai chữ số tận cùng của nó phải là 76 (2)Từ (1) và (2) ta thấy số 76 chia 2 thì hai chữ số tận cùng là 38 (= 76:2) hoặc 88(=186:2) nhưng cũng do 2999 cũng là bội của 4 nên hai chữ số tận cùng của 2999 là 88.b) 3999 = 31000 : 3Ta có: 34 = 81 −19 ( mod100 ) 38 192 61( mod100 ) 310 61.9 49 ( mod100 ) 3100 4910 01( mod100 ) 31000 01( mod100 ) , nghĩa là hai chữ số tận cùng của 31000 là 01. Số 31000 là bội của 3 nên chữ số hang trăm của nó khi chia cho 3 phải dư 2( Chia tiếp thì số 201 chia hết cho 3, nếu số dư là 0 hay 1 thì số 001, 101 không chia hết cho 3)Vậy 3999 = 31000 : 3 có hai chữ số tận cùng là 76 (= 201 : 2) 10